...

2005년부터 플라스틱 사출 금형 제조

How Do You Choose the Right Thermoplastic for Injection Molding?

Selecting the correct resin is the foundation of successful part performance in manufacturing. With over 85,000 commercial options available, engineers must navigate a complex hierarchy of polymers ranging from commodity resins to ultra-high-performance thermoplastics. This guide provides a structured material selection matrix comparing industry standards like Acrylonitrile Butadiene Styrene (ABS), Polycarbonate (PC), Polyamide (PA/Nylon), and Polyether Ether Ketone (PEEK).

주요 내용
– Material selection requires balancing mechanical performance (tensile strength, impact) with environmental constraints (temperature, chemical exposure).
– Engineering resins like Polycarbonate (PC) and Polyamide (PA) offer a middle ground between cost and high heat resistance.
– High-performance thermoplastics like PEEK provide metal-replacement capabilities but come with high processing costs.
– Medical applications require specific regulatory compliance, such as USP Class VI or ISO 10993 standards.

Thermoplastic for Injection Molding
Thermoplastic for Injection Molding

What are the Key Parameters for a Plastic Material Selection Guide?

A robust plastic material selection guide1 categorizes resins based on their polymer morphology (amorphous vs. semi-crystalline) and their performance tier. The selection matrix generally filters materials through four primary lenses: Thermal Performance, Mechanical Strength, Chemical Resistance, and Cost.

The Polymer Pyramid Hierarchy

Tier Material Family Examples Cost Factor Key Characteristic
Commodity General Purpose Polypropylene (PP), Polyethylene (PE) $ Low cost, easy processing, low load-bearing.
Engineering Structural/Technical ABS, Polycarbonate (PC), Polyamide (PA6, PA66) $$ – $$$ Good balance of strength, temperature, and dimension.
High-Performance Extreme Environment PEEK, Polyetherimide (PEI), PPS $$$$ High heat (>150°C), chemical inertness, metal replacement.

Thermoplastic for Injection Molding
Thermoplastic for Injection Molding

How Do ABS and Polycarbonate Properties Compare?

When designing enclosures, consumer electronics, or automotive interiors, the debate often settles on ABS vs Polycarbonate properties2.

아크릴로니트릴 부타디엔 스티렌(ABS) is an amorphous polymer known for its toughness, ease of machining, and excellent surface finish.
폴리카보네이트(PC) is a transparent amorphous thermoplastic known for extreme impact resistance and higher heat deflection.

Comparative Data: ABS vs. PC

속성 아크릴로니트릴 부타디엔 스티렌(ABS) 폴리카보네이트(PC)
인장 강도 30 – 50 MPa 55 – 75 MPa
Impact Strength (Izod) 200 – 400 J/m 600 – 900 J/m
Heat Deflection Temp (HDT @ 0.45 MPa) 85°C – 100°C 135°C – 145°C
투명성 Opaque Optical Clarity
수축률 0.4% – 0.7% 0.5% – 0.7%
Common Application Keyboards, Housings, LEGO bricks Safety goggles, Medical devices, Automotive lenses

참고: For applications requiring the processability of ABS and the strength of PC, a PC/ABS blend is often used.

Polycarbonate offers significantly higher impact resistance and optical clarity compared to ABS.True

PC is virtually unbreakable and transparent, whereas ABS is opaque and, while tough, has lower impact values than PC.

ABS is the best choice for high-heat applications above 120°C.False

ABS typically softens around 90-100°C. For temperatures above 120°C, Polycarbonate or Nylon are required.

Thermoplastic for Injection Molding
Thermoplastic for Injection Molding

What Are High-Performance Thermoplastics and When Should They Be Used?

High-performance thermoplastics3 are defined by their ability to maintain mechanical properties at elevated temperatures (continuous use >150°C) and resist harsh chemicals.

Polyamide (PA/Nylon) vs. Polyether Ether Ketone (PEEK)

  1. Polyamide 66 (PA66): A semi-crystalline engineering plastic. When reinforced with glass fibers (GF), PA66 rivals metals in structural rigidity. However, it is hygroscopic (absorbs moisture), which affects dimensional stability.
  2. Polyether Ether Ketone (PEEK): The apex of the polymer pyramid. It offers exceptional chemical resistance, hydrolysis resistance (steam), and high-temperature performance.

Performance Data Matrix

매개변수 Polyamide 66 (30% GF) PEEK (Unfilled)
녹는점 ~260°C ~343°C
Continuous Use Temp 120°C 250°C
내화학성 Good (Oils/Greases), Weak against Acids Excellent (Resists almost all organic/inorganic chemicals)
Cost Ratio (approx.) 1.5x – 2x vs Commodity 20x – 50x vs Commodity

PEEK is capable of withstanding continuous operating temperatures up to 250°C.True

PEEK is a semi-crystalline high-performance thermoplastic designed for extreme thermal environments.

High-performance thermoplastics like PEEK are easy to mold and require standard equipment.False

PEEK requires high mold temperatures (160°C+) and barrel temperatures (~400°C), often requiring specialized high-temp molding machines.

Thermoplastic for Injection Molding
Thermoplastic for Injection Molding

How to Interpret an Injection Molding Resin Chart?

An injection molding resin chart4 provides technical data points that dictate processability. To use these charts effectively, follow this stepwise selection process:

  1. Identify Thermal Constraints: Look at the Heat Deflection Temperature (HDT). The material must withstand the application’s maximum temperature without warping.
  2. Determine Mechanical Load: Check Tensile Modulus (stiffness) and Yield Strength. If the part bears weight, prioritize glass-filled variants.
  3. Assess Environmental Exposure: Consult chemical resistance charts. Amorphous resins (PC, ABS) are generally prone to stress cracking from solvents; Semi-crystalline resins (Nylon, PEEK, PP) offer better resistance.
  4. Review Shrinkage Rates: High shrinkage materials (like PEEK or POM) require precise mold design considerations compared to low shrinkage materials (ABS, PC).

Thermoplastic for Injection Molding
Thermoplastic for Injection Molding

What are the Considerations for Medical Grade Plastics?

Selecting medical grade plastics5 introduces regulatory and sterilization variables beyond standard mechanical properties.

Key Regulatory Standards

  • USP Class VI: The strictest testing tier for biocompatibility under US Pharmacopeia.
  • ISO 10993: The global standard for biological evaluation of medical devices.

Sterilization Compatibility Table

재료 Autoclave (Steam) Gamma Radiation Ethylene Oxide (EtO)
폴리카보네이트(PC) Poor (Hazes/Degrades) Good (Some yellowing) 우수
Polypropylene (Medical Grade PP) Good Poor (Becomes brittle) 우수
PEEK 우수 우수 우수
폴리설폰(PSU) 우수 Good 우수

Medical grade plastics must pass USP Class VI or ISO 10993 biocompatibility testing.True

These standards ensure the material does not induce toxicity or adverse reactions when in contact with the human body.

Any food-safe plastic is automatically suitable for medical implants.False

Food safety (FDA CFR 21) does not guarantee biocompatibility for internal use or resistance to medical sterilization methods.

Thermoplastic for Injection Molding
Thermoplastic for Injection Molding

What are the Practical Pros and Cons of Common Thermoplastics?

재료 장점 단점
ABS High impact strength, excellent surface finish, easy to plate/paint, low cost. Poor solvent resistance, low UV resistance (yellows), moderate heat limits.
폴리카보네이트(PC) High transparency, superior impact resistance, high dimensional stability. Susceptible to stress cracking, sensitive to notches, requires drying before molding.
Nylon (PA6/66) High mechanical strength, wear resistance, low friction, chemical resistance. High moisture absorption (hygroscopic), dimensional changes with humidity.
PEEK Highest thermal/chemical resistance, inherent flame retardancy, biocompatible. Extremely high material cost, difficult to process, limited color options.

Thermoplastic for Injection Molding
Thermoplastic for Injection Molding

What are the Typical Application Scenarios?

  • 자동차:
    • Interiors: ABS, PC/ABS (Dashboards, buttons).
    • Under-the-hood: PA66 GF30 (Engine covers, air intake manifolds).
  • 소비자 가전:
    • Housings: PC, PC/ABS (Laptops, phone cases).
    • 커넥터: LCP (Liquid Crystal Polymer) or PBT.
  • 의료 기기:
    • Disposables: PP, PS (Syringes, petri dishes).
    • 수술 도구: PEEK, PPSU (Handles, retractors).
  • Industrial/Aerospace:
    • Gears/Bearings: POM (Acetal), Nylon.
    • 구조 브래킷: PEEK, PEI (Ultem).

Thermoplastic for Injection Molding
Thermoplastic for Injection Molding

FAQ: Material Selection

1. How does moisture affect Nylon (PA) during injection molding?
Nylon is hygroscopic. If not dried to <0.2% moisture content before molding, the water turns to steam, causing splay marks (silver streaks) and significantly reducing the mechanical strength of the part.

2. Can ABS be used for outdoor applications?
Standard ABS has poor UV resistance and will degrade/discolor in sunlight. For outdoor use, ABS requires UV stabilizers or should be replaced with ASA (Acrylonitrile Styrene Acrylate), which has similar properties but superior UV stability.

3. Why is PEEK considered a metal replacement?
PEEK offers a unique combination of high strength-to-weight ratio, chemical inertness, and the ability to hold tight tolerances at high temperatures, allowing it to replace aluminum or steel in aerospace and medical components.

4. What is the difference between amorphous and semi-crystalline plastics?
Amorphous plastics (ABS, PC) have a random molecular structure, shrinking less and offering better transparency. Semi-crystalline plastics (Nylon, PEEK, PP) have ordered structures, offering better chemical and wear resistance but higher shrinkage rates.

5. When should I use glass-filled (GF) materials?
Use glass-filled resins (e.g., PA66 30% GF) when the application requires increased tensile strength, stiffness, and heat resistance. Note that glass fibers can make the material more brittle and abrasive to the mold.

Thermoplastic for Injection Molding
Thermoplastic for Injection Molding

요약

Choosing the right thermoplastic involves navigating a matrix of trade-offs. ABS serves as a versatile, aesthetic choice for general housing; 폴리카보네이트(PC) offers superior toughness and clarity; 나일론(PA) provides structural integrity for mechanical parts; and PEEK delivers unrivaled performance in extreme environments. Engineers must align these material properties with the specific regulatory, thermal, and mechanical demands of the final application to ensure product success.


  1. A plastic material selection guide helps engineers navigate the thousands of available resin options by categorizing them by performance and cost. 

  2. Comparisons of ABS vs Polycarbonate properties are critical for enclosure design, balancing impact strength against cost and processability. 

  3. High-performance thermoplastics like PEEK are specialized for extreme heat and chemical environments, often replacing metals. 

  4. An injection molding resin chart provides the specific processing parameters (temperatures, shrinkage) required for manufacturing. 

  5. Medical grade plastics involve strict regulatory compliance (USP Class VI) and compatibility with sterilization methods like autoclaving. 

최신 게시물
Facebook
트위터
LinkedIn
Pinterest
Mike Tang 사진
마이크 탕

안녕하세요, 저는이 게시물의 작성자입니다. 저는이 분야에서 10 년 이상 근무했으며 현장 생산 문제, 제품 설계 최적화, 금형 설계 및 프로젝트 예비 가격 평가를 처리하는 일을 담당했습니다. 맞춤형 플라스틱 금형 및 플라스틱 성형 관련 제품을 원하시면 언제든지 저에게 질문하십시오.

나와 연결하기 →
ko_KRKO

빠른 견적 요청하기

다음을 통해 도면 및 세부 요구 사항을 보내세요. 

Emial:[email protected]

또는 아래 문의 양식을 작성하세요:

빠른 견적 요청하기

다음을 통해 도면 및 세부 요구 사항을 보내세요. 

Emial:[email protected]

또는 아래 문의 양식을 작성하세요:

빠른 견적 요청하기

다음을 통해 도면 및 세부 요구 사항을 보내세요. 

Emial:[email protected]

또는 아래 문의 양식을 작성하세요:

빠른 견적 요청하기

다음을 통해 도면 및 세부 요구 사항을 보내세요. 

Emial:[email protected]

또는 아래 문의 양식을 작성하세요:

빠른 견적 요청하기

다음을 통해 도면 및 세부 요구 사항을 보내세요. 

Emial:[email protected]

또는 아래 문의 양식을 작성하세요:

브랜드에 대한 빠른 견적 요청하기

다음을 통해 도면 및 세부 요구 사항을 보내세요. 

Emial:[email protected]

또는 아래 문의 양식을 작성하세요:

댓글 작성하기

이 도움말에 대한 자세한 내용을 보려면 "[email protected]"으로 이메일 주소를 입력하세요.

빠른 견적 요청하기

다음을 통해 도면 및 세부 요구 사항을 보내세요. 

Emial:[email protected]

또는 아래 문의 양식을 작성하세요:

빠른 견적 요청하기

다음을 통해 도면 및 세부 요구 사항을 보내세요. 

Emial:[email protected]

또는 아래 문의 양식을 작성하세요: